Operational Analysis of an Axial and Solid Double-Pole Configuration in a Permanent Magnet Flux-Switching Generator

Author:

Neto Manuel Garcia1ORCID,da Silva Francisco Ferreira2ORCID,Branco Paulo José da Costa2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering (DEEC), Instituto Superior Técnico, University of Lisbon, 1049 Lisbon, Portugal

2. Mechanical Engineering Institute (IDMEC), Instituto Superior Técnico, University of Lisbon, 1049 Lisbon, Portugal

Abstract

There are two main beneficial characteristics that doubly salient permanent magnet (PM) electrical machines present for aircraft applications: armature windings and PMs excitation sources placed on the stator side (maintenance and thermal management), and having a clear-cut rotor without PMs or excitation windings (vulnerable at high speeds due to associated centripetal mechanical stresses). Within this framework, a doubly salient permanent magnet (DSPM) generator was conceived by optimizing the stator size and rotor structure to minimize the torque ripple and maximize the root-mean-square (RMS) voltage value per turn of each generator phase. Firstly, a comparison between the 2D and 3D finite element method (FEM) models is made considering the results of 3D finite element analysis (FEA) as our benchmark in order to understand the accuracy of the 2D results against our benchmark model, the 3D one. A multi-objective design strategy based on a 2D FEA is made, it is set to have characteristics closest to optimal for a Boeing 767 turbine, that is, the necessary electromotive force for a required power of 90 kW at 3000 rpm, feeding a simplified Boeing 767 electrical power distribution system. The results show that the machine could not deliver the required power at 3000 rpm since the 2D FEA demonstrates that the 2D model gives optimistic results when compared with the 3D FEM model. However, with a 3D FEA of the machine feeding the aircraft load, it was seen that the machine’s efficiency is 92%, suggesting that this machine can be a plausible solution.

Funder

FCT

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3