Multi-Physical Field Analysis and Optimization Design of the High-Speed Motor of an Air Compressor for Hydrogen Oxygen Fuel Cells

Author:

Ren Xiaojun1ORCID,Feng Ming1,Liu Jinliang1,Du Rui1

Affiliation:

1. Fluid and Monitoring Laboratory, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The hydrogen oxygen fuel cell is a power source with significant potential for development. The air compressor provides ample oxygen for the fuel cell, and as a key component of the air compressor, the performance of the motor greatly impacts the efficiency of the fuel cell. In order to enhance the system performance of high-speed permanent magnet motors, optimization was conducted on the motor’s geometric dimensions to minimize rotor loss and maximize power density, taking into account the comprehensive constraints of electromagnetic and mechanical properties. The finite-element method was employed to analyze the motor’s performance, conducting a multi-physical field analysis that included electromagnetic field, rotor loss, and mechanical strength analysis, as well as temperature field analysis. Aiming at the problem of high temperature rise in high-speed motor winding, the influence of the cooling water flow rate on the winding temperature rise was analyzed and simulated. Based on the analysis results, the minimum cooling water flow rate was obtained. According to the optimized design results, a prototype of an 18 kW, 100,000 rpm motor was manufactured, and the efficiency and temperature rise were tested. The experimental results verify the correctness and effectiveness of the optimal design.

Funder

scholarship support from the China Scholarship Council

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation analysis of BOP thermal management system for hydrogen fuel cell bus;Process Safety and Environmental Protection;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3