India’s Contribution to Greenhouse Gas Emission from Freshwater Ecosystems: A Comprehensive Review

Author:

Mondal BipradeepORCID,Bauddh KuldeepORCID,Kumar AmitORCID,Bordoloi Nirmali

Abstract

In the modern era, due to urbanization, industrialization, and anthropogenic activities in the catchment, greenhouse gas (GHG; CO2, CH4, and N2O) emissions from freshwater ecosystems received scientific attention because of global warming and future climate impacts. A developing country such as India contributes a huge share (4% of global) of GHGs from its freshwater ecosystems (e.g., rivers, lakes, reservoirs) to the atmosphere. This is the first comprehensive review dealing with the GHG emissions from Indian freshwater bodies. Literature reveals that the majority of GHG from India is emitted from its inland water, with 19% of CH4 flux and 56% of CO2 flux. A large part of India’s gross domestic product (GDP) is manipulated by its rivers. As a matter of fact, 117.8 Tg CO2 year−1 of CO2 is released from its major riverine waters. The potential of GHG emissions from hydropower reservoirs varies between 11–52.9% (mainly CH4 and CO2) because of spatio-temporal variability in the GHG emissions. A significant contribution was also reported from urban lakes, wetlands, and other inland waters. Being a subtropical country, India is one of the global GHG hotspots, having the highest ratio (GHG: GDP) of 1301.79. However, a large portion of India’s freshwater has not been considered yet, and there is a need to account for precise regional carbon budgets. Therefore, in this review, GHG emissions from India’s freshwater bodies, drivers behind GHG emissions (e.g., pH, mean depth, dissolved oxygen, and nutrients), and long-term climatic risks are thoroughly reviewed. Besides research gaps, future directions and mitigation measures are being suggested to provide useful insight into the carbon dynamics (sink/source) and control of GHG emissions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference112 articles.

1. Total Greenhouse Gas Emissions (kt of CO2 Equivalent),2021

2. Climate Change 2007: Synthesis Report,2007

3. Key messages from the IPCC AR6 climate science report

4. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf

5. https://www.iea.org/reports/world-energy-outlook-2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3