Prediction of Optimized Color Design for Sports Shoes Using an Artificial Neural Network and Genetic Algorithm

Author:

Yeh Yu-En

Abstract

Product design is a complicated activity that is highly reliant on individual impressions, feelings and emotions. Back-propagated neural networks have already been applied in Kansei engineering to solve difficult design problems. However, artificial neural networks (ANNs) have a slow rate of convergence, and find it difficult to devise a suitable network structure and find the global optimal solution. This study developed an ANN-based predictive model enhanced with a genetic algorithm (GA) optimization technique to search for close-to-optimal sports shoe color schemes for a given product image. The design factors of the sports shoe were set as the network inputs, and the Kansei objective value was the output of the GA-based ANN model. The results show that a model built with three hidden layers (28 × 38 × 19) could predict the object value reliably. The R2 of the preference objective was equal to 0.834, suggesting that the developed model is a feasible and efficient tool for predicting the objective value of product images. This study also found that the prediction accuracy for shoes with two colors was higher than that for shoes with only one color. In addition, the prediction accuracy for shoes with a relatively familiar shape was also higher. However, the prediction of color preferences is relatively difficult, because the respondents had different individual color preferences. Exploring the sensitivity and importance of the visual factors (form, color, texture) for various image words is a worthy topic for future research in this field.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3