Constructing a MOEA approach for product form Kansei design based on text mining and BPNN

Author:

Wang Tianxiong1,Xu Mengmeng1,Yang Liu2,Zhou Meiyu3,Sun Xin3

Affiliation:

1. School of Art, Anhui University, Hefei, China

2. School of Machinery and Electrical Engineering, Anhui Jianzhu University, Hefei, China

3. School of Art Design and Media, East China University of Science and Technology, Shanghai, China

Abstract

 Kansei Engineering (KE) is a product design method that aims to develop products to meet users’ emotional preferences. However, traditional KE faces the problem that the acquisition of Kansei factors does not represent the real consumers demands based on manual and reports, and using traditional methods to calculate relationship between Kansei factors and specific design elements, which can lead to the omission of key information. To address these problems, this study adopts text mining and backward propagation neural networks (BPNN) to propose a product form design method from a multi-objective optimization perspective. Firstly, Term Frequency-Inverse Document Frequency (TF-IDF) and WordNet are used to extract key user Kansei requirements from online review texts to obtain more accurate Kansei knowledge. Secondly, the BPNN is used to establish the non-linear relationship between product Kansei factors and specific design elements, and a preference mapping prediction model is constructed. Finally, BPNN is transformed into an iterative prediction value of non-dominated sorting genetic algorithm-II (NSGA-II), and the model is solved through multi-objective evolutionary algorithm (MOEA) to obtain the Pareto optimal solution set that satisfies the user’s multiple emotional needs, and the fuzzy Delphi method is used to obtain the best product form design scheme that meets the user’s multiple emotional images. Using the example of electric bicycle form design could show that this proposed method can effectively complete multi-objective product solutions innovation design.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3