Abstract
A novel sulfated xylogalactan-rich fraction (JSP for J. adhaerens Sulfated Polysaccharide) was extracted from the red Tunisian seaweed Jania adhaerens. JSP was purified using an alcoholic precipitation process and characterized by Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR), high-pressure size exclusion chromatography (HPSEC) with a multi-angle laser light scattering (MALLS), gas chromatography coupled to mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR, 1D and 2D). JSP was then evaluated regarding its physicochemical and rheological properties. Results showed that JSP was mainly composed of an agar-like xylogalactan sharing the general characteristics of corallinans. The structure of JSP was mainly composed of agaran disaccharidic repeating units (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n and (→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n, mainly substituted on O-6 of (1,3)-β-d-Galp residues by β-xylosyl side chains, and less with sulfate or methoxy groups. (1,4)-α-l-Galp residues were also substituted by methoxy and/or sulfate groups in the O-2 and O-3 positions. Mass-average and number-average molecular masses (Mw) and (Mn), intrinsic viscosity ([η]) and hydrodynamic radius (Rh) for JSP were, respectively, 8.0 × 105 g/mol, 1.0 × 105 g/mol, 76 mL/g and 16.8 nm, showing a flexible random coil conformation in solution. The critical overlap concentration C* of JSP was evaluated at 7.5 g/L using the Williamson model. In the semi-diluted regime, JSP solutions displayed a shear-thinning behavior with a great viscoelasticity character influenced by temperature and monovalent salts. The flow characteristics of JSP were described by the Ostwald model.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献