Structural Features and Rheological Properties of a Sulfated Xylogalactan-Rich Fraction Isolated from Tunisian Red Seaweed Jania adhaerens

Author:

Hentati Faiez,Delattre CédricORCID,Gardarin Christine,Desbrières JacquesORCID,Le Cerf DidierORCID,Rihouey Christophe,Michaud PhilippeORCID,Abdelkafi SlimORCID,Pierre GuillaumeORCID

Abstract

A novel sulfated xylogalactan-rich fraction (JSP for J. adhaerens Sulfated Polysaccharide) was extracted from the red Tunisian seaweed Jania adhaerens. JSP was purified using an alcoholic precipitation process and characterized by Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR), high-pressure size exclusion chromatography (HPSEC) with a multi-angle laser light scattering (MALLS), gas chromatography coupled to mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR, 1D and 2D). JSP was then evaluated regarding its physicochemical and rheological properties. Results showed that JSP was mainly composed of an agar-like xylogalactan sharing the general characteristics of corallinans. The structure of JSP was mainly composed of agaran disaccharidic repeating units (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n and (→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n, mainly substituted on O-6 of (1,3)-β-d-Galp residues by β-xylosyl side chains, and less with sulfate or methoxy groups. (1,4)-α-l-Galp residues were also substituted by methoxy and/or sulfate groups in the O-2 and O-3 positions. Mass-average and number-average molecular masses (Mw) and (Mn), intrinsic viscosity ([η]) and hydrodynamic radius (Rh) for JSP were, respectively, 8.0 × 105 g/mol, 1.0 × 105 g/mol, 76 mL/g and 16.8 nm, showing a flexible random coil conformation in solution. The critical overlap concentration C* of JSP was evaluated at 7.5 g/L using the Williamson model. In the semi-diluted regime, JSP solutions displayed a shear-thinning behavior with a great viscoelasticity character influenced by temperature and monovalent salts. The flow characteristics of JSP were described by the Ostwald model.

Funder

Campus France

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3