On the Integration of Knowledge Graphs into Deep Learning Models for a More Comprehensible AI—Three Challenges for Future Research

Author:

Futia GiuseppeORCID,Vetrò AntonioORCID

Abstract

Deep learning models contributed to reaching unprecedented results in prediction and classification tasks of Artificial Intelligence (AI) systems. However, alongside this notable progress, they do not provide human-understandable insights on how a specific result was achieved. In contexts where the impact of AI on human life is relevant (e.g., recruitment tools, medical diagnoses, etc.), explainability is not only a desirable property, but it is -or, in some cases, it will be soon-a legal requirement. Most of the available approaches to implement eXplainable Artificial Intelligence (XAI) focus on technical solutions usable only by experts able to manipulate the recursive mathematical functions in deep learning algorithms. A complementary approach is represented by symbolic AI, where symbols are elements of a lingua franca between humans and deep learning. In this context, Knowledge Graphs (KGs) and their underlying semantic technologies are the modern implementation of symbolic AI—while being less flexible and robust to noise compared to deep learning models, KGs are natively developed to be explainable. In this paper, we review the main XAI approaches existing in the literature, underlying their strengths and limitations, and we propose neural-symbolic integration as a cornerstone to design an AI which is closer to non-insiders comprehension. Within such a general direction, we identify three specific challenges for future research—knowledge matching, cross-disciplinary explanations and interactive explanations.

Publisher

MDPI AG

Subject

Information Systems

Reference53 articles.

1. Traffic Flow Prediction With Big Data: A Deep Learning Approach

2. DeepTox: Toxicity Prediction using Deep Learning

3. What does explainable AI really mean? A new conceptualization of perspectives;Doran;arXiv,2017

4. Employee churn prediction

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications;Hybrid Advances;2024-12

2. Knowledge management for off-site construction;Automation in Construction;2024-10

3. A post-hurricane building debris estimation workflow enabled by uncertainty-aware AI and crowdsourcing;International Journal of Disaster Risk Reduction;2024-10

4. A neurosymbolic approach to AI alignment;Neurosymbolic Artificial Intelligence;2024-08-28

5. Artificial Intelligence as a Driver of Strategic Communications in the Period of Deep Mediatization;2024 Communication Strategies in Digital Society Seminar (ComSDS);2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3