A neurosymbolic approach to AI alignment

Author:

Wagner Benedikt J.1,d’Avlia Garcez Artur1

Affiliation:

1. Department of Computer Science, City, University of London, London, United Kingdom

Abstract

We propose neurosymbolic integration as an approach for AI alignment via concept-based model explanation. The aim is to offer AI systems the ability to learn from human revision but also assist humans at evaluating AI capabilities. The proposed method allows users and domain experts to learn about the data-driven decision making process of large neural network models and to impose a particular behaviour onto such models. The models are queried using a symbolic logic language that acts as a lingua franca between humans and model representations. Interaction with the user then confirms or rejects a revision of the model using logical constraints that can be distilled back into the neural network. We illustrate the approach using the Logic Tensor Network framework alongside Concept Activation Vectors and apply it to Convolutional Neural Networks and the task of achieving quantitative fairness. Our results illustrate how the use of a logical language is able to provide users with a formalisation of the model’s decision making whilst allowing users to steer the model towards a given alignment constraint.

Publisher

IOS Press

Reference25 articles.

1. K. Ahmed, K.-W. Chang and G.V. den Broeck, A pseudo-semantic loss for deep generative models with logical constraints, in: NeurIPS, 2023.

2. P. Barbiero, G. Ciravegna, F. Giannini, M.E. Zarlenga, L.C. Magister, A. Tonda, P. Lio’, F. Precioso, M. Jamnik and G. Marra, Interpretable Neural-Symbolic Concept Reasoning, 2023.

3. Network Dissection: Quantifying Interpretability of Deep Visual Representations

4. S. Casper, X. Davies, C. Shi, T.K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner, P. Freire, T. Wang, S. Marks, C.-R. Segerie, M. Carroll, A. Peng, P. Christoffersen, M. Damani, S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E.J. Michaud, J. Pfau, D. Krasheninnikov, X. Chen, L. Langosco, P. Hase, E. Bıyık, A. Dragan, D. Krueger, D. Sadigh and D. Hadfield-Menell, Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback, 2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3