1. K. Ahmed, K.-W. Chang and G.V. den Broeck, A pseudo-semantic loss for deep generative models with logical constraints, in: NeurIPS, 2023.
2. P. Barbiero, G. Ciravegna, F. Giannini, M.E. Zarlenga, L.C. Magister, A. Tonda, P. Lio’, F. Precioso, M. Jamnik and G. Marra, Interpretable Neural-Symbolic Concept Reasoning, 2023.
3. Network Dissection: Quantifying Interpretability of Deep Visual Representations
4. S. Casper, X. Davies, C. Shi, T.K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner, P. Freire, T. Wang, S. Marks, C.-R. Segerie, M. Carroll, A. Peng, P. Christoffersen, M. Damani, S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E.J. Michaud, J. Pfau, D. Krasheninnikov, X. Chen, L. Langosco, P. Hase, E. Bıyık, A. Dragan, D. Krueger, D. Sadigh and D. Hadfield-Menell, Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback, 2023.