Impacts of Mixing Mode on Photocatalytic Reduction of Hexavalent Chromium over Titanium Dioxide Nanomaterial under Various Environmental Conditions

Author:

Yang Chih-Chi,Dao Khanh-Chau,Lin Yo-Sheng,Cheng Teng-Yun,Chen Ku-FanORCID,Tsai Yung-PinORCID

Abstract

This study explores the effects of initial Cr(VI) concentration, wavelength, hole-scavenger (absence and presence of salicylic acid), and oxygen conditions (aeration by air, nitrogen gas, and mechanical stir only) on photocatalytic reduction of hexavalent chromium over titanium dioxide photocatalyst and the chromic species distribution after photocatalysis. The experimental results show the existence of strong interactions between these factors. The factor of hole-scavenger was more important than the UV light wavelength condition for a reduction of 3 mg Cr(VI) L−1, whereas both factors became important when Cr(VI) concentration increased to 20 mgL−1. The higher the UV wavelength was, the less the amount of chromium retained on the TiO2 surface. The influence of oxygen-containing conditions in the solution on the reduction of 3 mgL−1 Cr(VI) was unobvious, whereas its influence became remarkable for the reduction of 20 mgL−1 Cr(VI) in the presence of SA. The interaction between oxygen-containing factor and other environmental factors, such as Cr(VI) concentration and scavenger presence (SA in this study), is a key factor about the degree of oxygen effect on Cr(VI) photo-reduction and the chromic species distribution. Simple stirring obtained better photocatalytic efficiency than aeration by air or nitrogen gas.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3