Photocatalytic Decolorization of Direct Red16 from an Aqueous Solution Using B-ZnO/TiO2 Nano Photocatalyst: Synthesis, Characterization, Process Modeling, and Optimization

Author:

Habeeb Saba Abdulmunem12,Zinatizadeh Ali Akbar134,Zangeneh Hadis5

Affiliation:

1. Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67187-73654, Iran

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Babylon, Babylon 51002, Iraq

3. Environmental Pollution and Engineering Group, Environmental Research Center (ERC), Razi University, Kermanshah 67187-73654, Iran

4. Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), Gehrmann Building, The University of Queensland, St. Lucia, Brisbane 4072, Australia

5. Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

The aim of this study was to modify the TiO2 photocatalyst with different amounts of ZnO (0.25, 0.5, and 1 wt. %) and B (1, 5, and 10 wt. %), as B-ZnO/TiO2, for mineralization and photodegradation of direct red 16 (DR16). B-ZnO/TiO2 was synthesized by the sol-gel method and the composite with 5 wt. % of B and 0.5 wt. % of ZnO was selected as the optimal composition, based on DR16 removal experiments. Th results showed that the removal efficiencies for optimum amounts of B and ZnO were 47 and 87 % in B-TiO2 and B-ZnO/TiO2 composition, respectively. The structural and chemical characteristics, modeling and optimization of the operating variables, adsorptive behavior, and reusability of the synthesized photocatalyst were evaluated. The acquired findings confirmed the generation of an amorphous phase with a low recombination rate and an improvement of photodegradation efficiency under visible light irradiation. The effects of (NH4)2S2O8, H2O2, KCl, and KHCO3 salts on dye photocatalytic removal were evaluated, and the maximum positive effect was observed using (NH4)2S2O8. The results of optimization of the operational variables and their optimum values proved that an increase in B-ZnO/TiO2 loading, reaction time, LED intensity, and a decrease in DR16 concentration and initial pH, improved the removal efficiency. The maximum DR16 degradation (100%) was obtained in the presence of 10 ppm DR16 and 1 g/L B5%-ZnO0.5%/TiO2, at pH 3, under visible light irradiation, after 200 min. The DR16 adsorption process by the B-ZnO/TiO2 followed a pseudo-second-order model. The mechanism of the photodegradation of DR16 dye was ascribed to the absorbed h+ and OH− active species. According to the results, the B-ZnO/TiO2 photocatalyst can be considered as a promising candidate for actual dye removal under visible light irradiation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3