A Systematic Review of Industrial Exoskeletons for Injury Prevention: Efficacy Evaluation Metrics, Target Tasks, and Supported Body Postures

Author:

Golabchi AliORCID,Chao AndrewORCID,Tavakoli MahdiORCID

Abstract

Industrial workplaces expose workers to a high risk of injuries such as Work-related Musculoskeletal Disorders (WMSDs). Exoskeletons are wearable robotic technologies that can be used to reduce the loads exerted on the body’s joints and reduce the occurrence of WMSDs. However, current studies show that the deployment of industrial exoskeletons is still limited, and widespread adoption depends on different factors, including efficacy evaluation metrics, target tasks, and supported body postures. Given that exoskeletons are not yet adopted to their full potential, we propose a review based on these three evaluation dimensions that guides researchers and practitioners in properly evaluating and selecting exoskeletons and using them effectively in workplaces. Specifically, evaluating an exoskeleton needs to incorporate: (1) efficacy evaluation metrics based on both subjective (e.g., user perception) and objective (e.g., physiological measurements from sensors) measures, (2) target tasks (e.g., manual material handling and the use of tools), and (3) the body postures adopted (e.g., squatting and stooping). This framework is meant to guide the implementation and assessment of exoskeletons and provide recommendations addressing potential challenges in the adoption of industrial exoskeletons. The ultimate goal is to use the framework to enhance the acceptance and adoption of exoskeletons and to minimize future WMSDs in industrial workplaces.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. The Economics of Ergonomicshttps://www.whsc.on.ca/Files/Resources/Ergonomic-Resources/RSI-Day-2016_MSD-Case-Study_The-economics-of-ergon.aspx

2. Exoskeletons – a review of industrial applications

3. Methodologies for evaluating exoskeletons with industrial applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3