Resolving Persistent Packet Collisions through Broadcast Feedback in Cellular V2X Communication

Author:

Yoon YoungjoonORCID,Kim Hyogon

Abstract

The Third Generation Partnership Project (3GPP) Release 16 defines the sensing-based semi-persistent scheduling (SPS) as the resource allocation scheme for Sidelink Mode 2 in New Radio (NR)-based vehicle-to-everything (V2X) communication. A well-known issue in Mode 2 is the persistent packet collision that results from two or more vehicles repeatedly using the same resource for transmission. It may create serious safety problems when the vehicles are in a situation where only the broadcast safety beacons can assist in driving. To resolve this issue, a solution that relies on the feedback from neighboring vehicles is proposed, through which the vehicles suffering from persistent packet collisions can quickly part and select other resources. Extensive simulations show that the proposed broadcast feedback scheme reduces persistent packet collisions by an order of magnitude compared to SPS, and it is achieved without sacrificing the average packet reception ratio (PRR). Namely, it is the quality aspect (i.e., burstiness) of the packet collisions that the proposed scheme addresses rather than the quantity (i.e., total number of collision losses). By preventing extended packet loss events, the proposed scheme is expected to serve NR V2X better, which requires stringent QoS in terms of the information update delay thereby helping to reduce the chances of vehicle crashes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference25 articles.

1. Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2 (Release 16),2020

2. Technical Specification Group Radio Access Network; NR; Physical Layer Procedures for Data (Release 16),2020

3. Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) Protocol Specification (Release 16),2020

4. Dedicated Short Range Communications (DSRC) Message Set Dictionary,2016

5. On Wireless Blind Spots in the C-V2X Sidelink

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3