Reinforcement Learning Approach for Adaptive C-V2X Resource Management

Author:

Bayu Teguh Indra12,Huang Yung-Fa3ORCID,Chen Jeang-Kuo1ORCID

Affiliation:

1. Department of Information Management, Chaoyang University of Technology, Taichung 413310, Taiwan

2. Department of Informatics Engineering, Satya Wacana Christian University, Salatiga 50711, Indonesia

3. Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan

Abstract

The modulation coding scheme (MCS) index is the essential configuration parameter in cellular vehicle-to-everything (C-V2X) communication. As referenced by the 3rd Generation Partnership Project (3GPP), the MCS index will dictate the transport block size (TBS) index, which will affect the size of transport blocks and the number of physical resource blocks. These numbers are crucial in the C-V2X resource management since it is also bound to the transmission power used in the system. To the authors’ knowledge, this particular area of research has not been previously investigated. Ultimately, this research establishes the fundamental principles for future studies seeking to use the MCS adaptability in many contexts. In this work, we proposed the application of the reinforcement learning (RL) algorithm, as we used the Q-learning approach to adaptively change the MCS index according to the current environmental states. The simulation results showed that our proposed RL approach outperformed the static MCS index and was able to attain stability in a short number of events.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Vehicle-to-Vehicle (V2V) Communication Efficiency with KNN-based Dynamic Time slot Allocation;2024 International Conference on Social and Sustainable Innovations in Technology and Engineering (SASI-ITE);2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3