Augmented PIN Authentication through Behavioral Biometrics

Author:

Nerini MatteoORCID,Favarelli EliaORCID,Chiani MarcoORCID

Abstract

Personal Identification Numbers (PINs) are widely used today for user authentication on mobile devices. However, this authentication method can be subject to several attacks such as phishing, smudge, and side-channel. In this paper, we increase the security of PIN-based authentication by considering behavioral biometrics, specifically the smartphone movements typical of each user. To this end, we propose a method based on anomaly detection that is capable of recognizing whether the PIN is inserted by the smartphone owner or by an attacker. This decision is taken according to the smartphone movements, which are recorded during the PIN insertion through the built-in motion sensors. For each digit in the PIN, an anomaly score is computed using Machine Learning (ML) techniques. Subsequently, these scores are combined to obtain the final decision metric. Numerical results show that our authentication method can achieve an Equal Error Rate (EER) as low as 5% in the case of 4-digit PINs, and 4% in the case of 6-digit PINs. Considering a reduced training set, composed of solely 50 samples, the EER only slightly worsens, reaching 6%. The practicality of our approach is further confirmed by the low processing time required, on the order of fractions of milliseconds.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Swipin: Fast and secure pin-entry on smartphones;Von Zezschwitz;Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems,2015

2. Making graphic-based authentication secure against smudge attacks;Von Zezschwitz;Proceedings of the 2013 International Conference on Intelligent User Interfaces,2013

3. Sensor-Based Mobile Web Cross-Site Input Inference Attacks and Defenses

4. Systematic Classification of Side-Channel Attacks: A Case Study for Mobile Devices

5. Stealing PINs via mobile sensors: actual risk versus user perception

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3