Satellite-Based Carbon Estimation in Scotland: AGB and SOC

Author:

Chan Chun Ki1,Gomez Carla Arus1,Kothikar Anish1,Baiz-Villafranca P. M.1

Affiliation:

1. Department of Computing, Imperial College, London SW7 2BX, UK

Abstract

The majority of state-of-the-art research employs remote sensing on AGB (Above Ground Biomass) and SOC (Soil Organic Carbon) separately, although some studies indicate a positive correlation between the two. We intend to combine the two domains in our research to improve state-of-the-art total carbon estimation. We begin by establishing a baseline model in our study area in Scotland, using state-of-the-art methodologies in the SOC and AGB domains. The effects of feature engineering techniques such as variance inflation factor and feature selection on machine learning models are then investigated. This is extended by combining predictor variables from the two domains. Finally, we leverage the possible correlation between AGB and SOC to establish a relationship between the two and propose novel models in an attempt to outperform the state-of-the-art results. We compared three machine learning techniques, boosted regression tree, random forest, and xgboost. These techniques have been demonstrated to be the most effective in both domains. This research makes three contributions: (i) Including Digital Elevation Map (DEM) as a predictor variable in the AGB model improves the model result by 13.5 % on average across the three machine learning techniques experimented, implying that DEM should be considered for AGB estimation as well, despite the fact that it has previously been used exclusively for SOC estimation. (ii) Using SOC and SOC Density improves the prediction of the AGB model by a significant 14.2% on average compared to the state-of-the-art baseline (When comparing the R2 value across all three modeling techniques in Model B and Model H, there is an increase from 0.5016 to 0.5604 for BRT, 0.4958 to 0.5925 for RF and 0.5161 to 0.5750 for XGB), which strengthens our experiment results and suggests a future research direction of combining AGB and SOC as a joint study domain. (iii) Including AGB as a predictor variable for SOC improves model performance for Random Forest, but reduced performance for Boosted Regression tree and XG Boost, indicating that the results are specific to ML models and more research is required on the feature space and modeling techniques. Additionally, we propose a method for estimating total carbon using data from Sentinel 1, Sentinel 2, Landsat 8, Digital Elevation, and the Forest Inventory.

Funder

Royal Society

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference43 articles.

1. Carbon in the Vegetation and Soils of Great Britain;Milne;J. Environ. Manag.,1997

2. The global carbon sink: A grassland perspective;Scurlock;Glob. Chang. Biol.,1998

3. Assessing the provision of carbon-related ecosystem services across a range of temperate grassland systems in western Canada;Iravani;Sci. Total Environ.,2019

4. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia;Sierra;For. Ecol. Manag.,2007

5. Large soil carbon storage in terrestrial ecosystems of Canada;Sothe;Earth Space Sci. Open Arch. ESSOAr,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3