Satellite-based estimation of soil organic carbon in Portuguese grasslands

Author:

Morais Tiago G.,Jongen Marjan,Tufik Camila,Rodrigues Nuno R.,Gama Ivo,Serrano João,Gonçalves Maria C.,Mano Raquel,Domingos Tiago,Teixeira Ricardo F. M.

Abstract

Introduction:Soil organic carbon (SOC) sequestration is one of the main ecosystem services provided by well-managed grasslands. In the Mediterranean region, sown biodiverse pastures (SBP) rich in legumes are a nature-based, innovative, and economically competitive livestock production system. As a co-benefit of increased yield, they also contribute to carbon sequestration through SOC accumulation. However, SOC monitoring in SBP require time-consuming and costly field work.Methods:In this study, we propose an expedited and cost-effective indirect method to estimate SOC content. In this study, we developed models for estimating SOC concentration by combining remote sensing (RS) and machine learning (ML) approaches. We used field-measured data collected from nine different farms during four production years (between 2017 and 2021). We utilized RS data from both Sentinel-1 and Sentinel-2, including reflectance bands and vegetation indices. We also used other covariates such as climatic, soil, and terrain variables, for a total of 49 inputs. To reduce multicollinearity problems between the different variables, we performed feature selection using the sequential feature selection approach. We then estimated SOC content using both the complete dataset and the selected features. Multiple ML methods were tested and compared, including multiple linear regression (MLR), random forests (RF), extreme gradient boosting (XGB), and artificial neural networks (ANN). We used a random cross-validation approach (with 10 folds). To find the hyperparameters that led to the best performance, we used a Bayesian optimization approach.Results:Results showed that the XGB method led to higher estimation accuracy than the other methods, and the estimation performance was not significantly influenced by the feature selection approach. For XGB, the average root mean square error (RMSE), measured on the test set among all folds, was 2.78 g kg−1(r2equal to 0.68) without feature selection, and 2.77 g kg−1(r2equal to 0.68) with feature selection (average SOC content is 13 g kg−1). The models were applied to obtain SOC content maps for all farms.Discussion:This work demonstrated that combining RS and ML can help obtain quick estimations of SOC content to assist with SBP management.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review Of Soil Organic Carbon (SOC) Prediction Techniques In Agricultural Lands Using Remote Sensing;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Employing the Soil Data Cube and Digital Soil Mapping Techniques for National Topsoil Predictions of Soil Organic Carbon and Clay Content over the Lithuanian Grasslands;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Predictive Machine Learning Models for Livestock Output;SpringerBriefs in Applied Sciences and Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3