Migration of Dissolved Organic Matter in the Epikarst Fissured Soil of South China Karst

Author:

Cheng Kun12ORCID,Liu Ziqi12,Xiong Kangning12ORCID,He Qiufang3,Li Yuan12,Cai Lulu12,Chen Yi12

Affiliation:

1. School of Karst Science, Guizhou Normal University, Guiyang 550001, China

2. State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China

3. Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400700, China

Abstract

The efficient reactivity and mobility of dissolved organic matter (DOM) affect biogeochemical processes. As important components that link aboveground and belowground vertical systems under the binary 3D structure of karst, fissures provide soil–water–nutrient leakage channels and storage spaces. However, reports on DOM properties and drivers in fissured soil are extremely rare. This study characterizes DOM in the fissured soil of different vegetation types under medium-intensity rocky desertification conditions. Soil samples were characterized via ultraviolet (UV)–visible absorption spectroscopy and fluorescence excitation–emission matrix–parallel factor analysis. Five fluorescent fractions were identified. The controlling factors for the optical properties of soil DOM were determined via the redundancy analysis method. Results showed the following: (1) Dissolved organic C/soil organic C < 4.68 + 0.49‰, specific UV absorbance (SUVA)254 and SUVA260 exhibited low overall performance with the vast majority of the humification index (HIX) < 4, most of the fluorescence index (FI) ≥ 1.7, most of the biological index (BIX) in 0.6 < BIX < 1 and 31.67–41.67% of protein-like fractions. These data indicate that cleaved soil, except for topsoil, has low DOM content, weak aromaticity, and low humification; (2) Rainfall intensity, aperture, and near-surface vegetation type are the major causes of DOM transport and loss; and (3) Most DOM losses are likely to be protein-like and enhance the loss of soil P. In summary, environmental factors and the characteristics of fissures determine DOM content and migration, particularly rainfall intensity and vegetation type. The loss of lighter DOM components will be greater in an area with high karst desertification grade, strong fissure development, weaker soil aromaticity, and lower humification. These results provide a clearer basis for optimizing the fissure nutrient element migration scheme in karst areas.

Funder

Philosophy and Social Science Planning Key Project of Guizhou Province

Key Project of Science and Technology Program of Guizhou Province

China Overseas Exper-tise Introduction Program for Discipline Innovation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3