Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor

Author:

Li HaoyuORCID,Derrode StéphaneORCID,Pieczynski Wojciech

Abstract

Lower limb locomotion activity is of great interest in the field of human activity recognition. In this work, a triplet semi-Markov model-based method is proposed to recognize the locomotion activities of healthy individuals when lower limbs move periodically. In the proposed algorithm, the gait phases (or leg phases) are introduced into the hidden states, and Gaussian mixture density is introduced to represent the complex conditioned observation density. The introduced sojourn state forms the semi-Markov structure, which naturally replicates the real transition of activity and gait during motion. Then, batch mode and on-line Expectation-Maximization (EM) algorithms are proposed, respectively, for model training and adaptive on-line recognition. The algorithm is tested on two datasets collected from wearable inertial sensors. The batch mode recognition accuracy reaches up to 95.16%, whereas the adaptive on-line recognition gradually obtains high accuracy after the time required for model updating. Experimental results show an improvement in performance compared to the other competitive algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3