Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation

Author:

Zhu Zheng-An,Lu Yun-Chung,You Chih-Hsiang,Chiang Chen-KuoORCID

Abstract

In this paper, a multipath convolutional neural network (MP-CNN) is proposed for rehabilitation exercise recognition using sensor data. It consists of two novel components: a dynamic convolutional neural network (D-CNN) and a state transition probability CNN (S-CNN). In the D-CNN, Gaussian mixture models (GMMs) are exploited to capture the distribution of sensor data for the body movements of the physical rehabilitation exercises. Then, the input signals and the GMMs are screened into different segments. These form multiple paths in the CNN. The S-CNN uses a modified Lempel–Ziv–Welch (LZW) algorithm to extract the transition probabilities of hidden states as discriminate features of different movements. Then, the D-CNN and the S-CNN are combined to build the MP-CNN. To evaluate the rehabilitation exercise, a special evaluation matrix is proposed along with the deep learning classifier to learn the general feature representation for each class of rehabilitation exercise at different levels. Then, for any rehabilitation exercise, it can be classified by the deep learning model and compared to the learned best features. The distance to the best feature is used as the score for the evaluation. We demonstrate our method with our collected dataset and several activity recognition datasets. The classification results are superior when compared to those obtained using other deep learning models, and the evaluation scores are effective for practical applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3