Abstract
This paper studies the robust formation flying problem for a swarm of drones, which are modeled as uncertain second order systems. By making use of minimal virtual leader information, a fully distributed robust control scheme is proposed, which includes three parts. First, the output based adaptive distributed observer is adopted to recover the global flying path vector as well as the coefficients of the minimal polynomial of the system matrix of the virtual leader system for each drone based on neighboring information from the communication network. Second, based on the estimated minimal polynomial of the system matrix of the virtual leader system, an asymptotic internal model is conceived to deal with uncertain system parameters. Third, by combining the asymptotic internal model and a certainty equivalent dynamic state feedback control law, a local trajectory tracking controller is synthesized to solve the robust formation flying problem. Numerical simulations are provided to validate the proposed control scheme.
Funder
National Natural Science Foundation of China
Guangdong Natural Science Foundation
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献