A Group Handover Scheme for Supporting Drone Services in IoT-Based 5G Network Architectures

Author:

Skondras Emmanouil,Kosmopoulos Ioannis,Michailidis EmmanouelORCID,Michalas Angelos,Vergados Dimitrios

Abstract

Next generation mobile networks are expected to integrate multiple drones organized in Flying Ad Hoc Networks (FANETs) to support demanding and diverse services. The highly mobile drones should always be connected to the network in order to satisfy the strict requirements of upcoming applications. As the number of drones increases, they burden the network with the management of signaling and continuous monitoring of the drones during data transmission. Therefore, designing transmission mechanisms for fifth-generation (5G) drone-aided networks and using clustering algorithms for their grouping is of paramount importance. In this paper, a clustering and selection algorithm of the cluster head is proposed together with an efficient Group Handover (GHO) scheme that details how the respective Point of Access (PoA) groups will be clustered. Subsequently, for each cluster, the PoA elects a Cluster Head (CH), which is responsible for manipulating the mobility of the cluster by orchestrating the handover initiation (HO initiation), the network selection, and the handover execution (HO execution) processes. Moreover, the members of the cluster are informed about the impending HO from the CH. As a result, they establish new uplink and downlink communication channels to exchange data packets. In order to evaluate the proposed HO scheme, extensive simulations are carried out for a next-generation drone network architecture that supports Internet of Things (IoT) and multimedia services. This architecture relies on IEEE 802.11p Wireless Access for Vehicular Environment (WAVE) Road Side Units (RSUs) as well as Long-Term Evolution Advanced (LTE-A) and IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMAX). Furthermore, the proposed scheme is also evaluated in a real-world scenario using a testbed deployed in a controlled laboratory environment. Both simulation and real-world experimental results verify that the proposed scheme outperforms existing HO algorithms.

Funder

University of Piraeus Research Committee

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel multi-level clustering mechanism using heuristic approach for secure data transmission in WSN sector with various trust computation;Intelligent Decision Technologies;2023-11-20

2. Reactive handover coordination system with regenerative blockchain principles for swarm unmanned aerial vehicles;Peer-to-Peer Networking and Applications;2023-10-26

3. Vision-Assisted Beam Prediction for Real World 6G Drone Communication;2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC);2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3