Abstract
Telecommunications among unmanned aerial vehicles (UAVs) have emerged recently due to rapid improvements in wireless technology, low-cost equipment, advancement in networking communication techniques, and demand from various industries that seek to leverage aerial data to improve their business and operations. As such, UAVs have started to become extremely prevalent for a variety of civilian, commercial, and military uses over the past few years. UAVs form a flying ad hoc network (FANET) as they communicate and collaborate wirelessly. FANETs may be utilized to quickly complete complex operations. FANETs are frequently deployed in three dimensions, with a mobility model determined by the work they are to do, and hence differ between vehicular ad hoc networks (VANETs) and mobile ad hoc networks (MANETs) in terms of features and attributes. Furthermore, different flight constraints and the high dynamic topology of FANETs make the design of routing protocols difficult. This paper presents a comprehensive review covering the UAV network, the several communication links, the routing protocols, the mobility models, the important research issues, and simulation software dedicated to FANETs. A topology-based routing protocol specialized to FANETs is discussed in-depth, with detailed categorization, descriptions, and qualitatively compared analyses. In addition, the paper demonstrates open research topics and future challenge issues that need to be resolved by the researchers, before UAVs communications are expected to become a reality and practical in the industry.
Funder
financial support from Collaborative Research in Engineering, Science and Technology (CREST), under the grant T23C2-19
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献