A Middleware Infrastructure for Programming Vision-Based Applications in UAVs

Author:

Arias-Perez PedroORCID,Fernández-Conde JesúsORCID,Martin Gomez DavidORCID,Cañas José M.ORCID,Campoy PascualORCID

Abstract

Unmanned Aerial Vehicles (UAVs) are part of our daily lives with a number of applications in diverse fields. On many occasions, developing these applications can be an arduous or even impossible task for users with a limited knowledge of aerial robotics. This work seeks to provide a middleware programming infrastructure that facilitates this type of process. The presented infrastructure, named DroneWrapper, offers the user the possibility of developing applications abstracting the user from the complexities associated with the aircraft through a simple user programming interface. DroneWrapper is built upon the de facto standard in robot programming, Robot Operating System (ROS), and it has been implemented in Python, following a modular design that facilitates the coupling of various drivers and allows the extension of the functionalities. Along with the infrastructure, several drivers have been developed for different aerial platforms, real and simulated. Two applications have been developed in order to exemplify the use of the infrastructure created: follow-color and follow-person. Both applications use techniques of computer vision, classic (image filtering) or modern (deep learning), to follow a specific-colored object or to follow a person. These two applications have been tested on different aerial platforms, including real and simulated, to validate the scope of the offered solution.

Funder

Madrid Robotics Digital Innovation Hub

Programas de Actividades I+D en la Comunidad de Madrid

Structural Funds of the EU

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3