Identification of INS Sensor Errors from Navigation Data Based on Improved Pigeon-Inspired Optimization

Author:

Li Zhihua,Deng Yimin,Liu Wenxue

Abstract

The error level of inertial sensor parameters determines the navigation accuracy of an inertial navigation system. For many applications, such as drones, errors in horizontal gyroscopes and accelerometers, can significantly affect the navigation results. Different from most methods of filter estimation, we innovatively propose using evolutionary algorithms, such as the improved pigeon-inspired optimization (PIO) method, to identify sensor errors through navigation data. In this method, the navigation data are firstly collected; then, the improved carrier pigeon optimization method is used to find the optimal error parameter values of the horizontal gyroscope and accelerometer, so as to minimize the navigation result error calculated by the navigation data. At the same time, we propose a new improved method for pigeon-inspired optimization with dimension vectors adaptive mutation (DVPIO for short) that can avoid local optima in the later stages of the iteration. In the DVPIO method, 2n particles with poor fitness are selected for the following variation, with 2n dimension vectors when it is judged that the position is premature, where n represents the number of parameters to be identified; a dimension vector only represents the positive or negative change of a parameter, whose change amount is d can be adjusted adaptively. DVPIO method has better stability, faster convergence speed, and higher accuracy. This work has potential to reduce the need for the disassembly and assembly of the INS and return it to the manufacturer for calibration.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3