Improved Dyna-Q: A Reinforcement Learning Method Focused via Heuristic Graph for AGV Path Planning in Dynamic Environments

Author:

Liu YiyangORCID,Yan ShuaihuaORCID,Zhao YangORCID,Song ChunheORCID,Li Fei

Abstract

Dyna-Q is a reinforcement learning method widely used in AGV path planning. However, in large complex dynamic environments, due to the sparse reward function of Dyna-Q and the large searching space, this method has the problems of low search efficiency, slow convergence speed, and even inability to converge, which seriously reduces the performance and practicability of it. To solve these problems, this paper proposes an Improved Dyna-Q algorithm for AGV path planning in large complex dynamic environments. First, to solve the problem of the large search space, this paper proposes a global path guidance mechanism based on heuristic graph, which can effectively reduce the path search space and, thus, improve the efficiency of obtaining the optimal path. Second, to solve the problem of the sparse reward function in Dyna-Q, this paper proposes a novel dynamic reward function and an action selection method based on the heuristic graph, which can provide more intensive feedback and more efficient action decision for AGV path planning, effectively improving the convergence of the algorithm. We evaluated our approach in scenarios with static obstacles and dynamic obstacles. The experimental results show that the proposed algorithm can obtain better paths more efficiently than other reinforcement-learning-based methods including the classical Q-Learning and the Dyna-Q algorithms.

Funder

National Key R&D Program of China

LiaoNing Revitalization Talents Program

Nature Science Foundation of Liaoning province

State Key Laboratory of Robotics

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3