Abstract
Monitoring individual tree crown characteristics is an important component of smart agriculture and is crucial for orchard management. We focused on understanding how UAV imagery taken across one growing season can help understand and predict the growth and development of pistachio trees grown from rootstock seedlings. Tree crown characteristics (i.e., height, size, shape, and mean normalized difference vegetation index (NDVI)) were derived using an object-based image analysis method with multispectral Uncrewed Aerial Vehicles (UAV) imagery flown seven times over 472 five-year-old pistachio trees in 2018. These imagery-derived metrics were compared with field-collected tree characteristics (tree height, trunk caliper, crown height, width and volume, and leaf development status) collected over two months in 2018. The UAV method captured seasonal development of tree crowns well. UAV-derived tree characteristics were better correlated with the field tree characteristics when recorded between May and November, with high overall correlations in November. The highest correlation (R2 = 0.774) was found between trunk caliper and June UAV crown size. The weakest correlations between UAV and field traits were found in March and December. Spring leaf development stage was most variable, and mean NDVI values were lowest in March, when leaf development starts. Mean NDVI increased orchard-wide by May, and was consistently high through November. This study showcased the benefits of timely, detailed drone imagery for orchard managers.
Funder
California Pistachio Research Board
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献