Remote Sensing for Sustainable Pistachio Cultivation and Improved Quality Traits Evaluation through Thermal and Non-Thermal UAV Vegetation Indices

Author:

Martínez-Peña Raquel1,Vélez Sergio2ORCID,Vacas Rubén1,Martín Hugo1,Álvarez Sara1ORCID

Affiliation:

1. Instituto Tecnológico Agrario de Castilla y León, Carretera de Burgos km 119, 47071 Valladolid, Spain

2. Information Technology Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands

Abstract

Pistachio (Pistacia vera L.) has earned recognition as a significant crop due to its unique nutrient composition and its adaptability to the growing threat of climate change. Consequently, the utilization of remote sensing techniques for non-invasive pistachio monitoring has become critically important. This research was conducted in two pistachio orchards located in Spain, aiming to assess the effectiveness of vegetation indices (VIs) in estimating nut yield and quality under various irrigation conditions. To this end, high-resolution multispectral and thermal imagery were gathered using a Micasense ALTUM sensor carried by a DJI Inspire 2 drone in order to calculate the NDRE (normalized difference red edge index), GNDVI (green normalized difference vegetation index), NDVI (normalized difference vegetation index), and CWSI (crop water stress index). Each orchard underwent two flights at distinct growth stages, totaling four flights. In June, NDRE-carbohydrates (r = 0.78) and CWSI-oleic (r = 0.77) showed the highest correlations, while in September, CWSI-carbohydrates (r = 0.62) and NDVI-iron (r = 0.54) Despite NDVI’s limitations due to saturation effects, all VIs had significant yield and quality correlations, with GNDVI proving most effective in both flights. CWSI correlated considerably on both dates in terms of several quality parameters (carbohydrate percentage, magnesium, iron, and fatty acids, namely palmitoyl, stearic, oleic, and linoleic), surpassing non-thermal indices. Finally, it is important to consider the impact of environmental factors, such as the location of the sun, when interpreting the CWSI, as it modifies the temperature distribution pattern within the canopy. This study supports the viability of remote sensing and vegetation indices as potential tools for enhancing the management of pistachio orchards.

Funder

CDTI

MCIN

European Union «NextGenerationEU»//PRTR

FEADER funds

Junta de Castilla y León

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3