Understanding Spray Attributes of Commercial UAAS as Impacted by Operational and Design Parameters

Author:

Sinha RajeevORCID,Johnson Jeffrey,Power Kiley,Moodie Aaron,Warhurst Emily,Barbosa Roberto

Abstract

Unmanned aerial application systems (UAAS) have recently gained momentum for the application of crop protection (CP) products. Due to their high operational efficiency, mobility, and low cost, UAAS may be perceived as a more viable option for spray application when compared to conventional application techniques, especially backpack/knapsack sprayers. However, being a relatively new technology and not a common practice in the USA, there are no best management practices or guidelines for testing UAAS spray performance. Therefore, this study was undertaken to assess the impact of different attributes pertinent to UAAS flight (e.g., altitude, speed, etc.), application (e.g., droplet size, tank additive, etc.), and UAAS design (e.g., nozzle placement relative to a the rotor) on spray performance. The spray performance was evaluated in terms of swath and spray drift (ground and airborne) using water-sensitive papers (WSP) and mylar card/string samplers, respectively. The samplers were respectively analyzed using image processing and fluorometry techniques. The different treatments under study were UAAS type (MG-1P and AG V6A+), flight altitude (1.5, 2.5, and 4.0 m) and speed (2 and 3 ms−1), and nozzle type (XR11001 and XR8002 flat fan nozzles) with different droplet volume median diameter (VMD) at ~207 kPa (very fine [140 µm] and fine [196 µm], respectively). The results indicated a highly variable swath for both platform types. While nozzles under each rotor may be a common design in commercial UAAS, the results indicated that placement of nozzles out on a boom might have a less variable swath and a lower drift potential. In addition, flying slower, using a relatively larger droplet VMD (i.e., 196 µm at ~207 kPa) may reduce both ground and airborne drift. This study may serve as a guideline for growers/operators to evaluate their UAAS platforms and optimize key attributes pertinent to UAAS operation for effective spraying.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3