Wind Speed Measurement by an Inexpensive and Lightweight Thermal Anemometer on a Small UAV

Author:

Inoue JunORCID,Sato KazutoshiORCID

Abstract

Profiling wind information when using a small unmanned aerial vehicle (sUAV) is vital for atmospheric profiling and monitoring attitude during flight. Wind speed on an sUAV can be measured directly using ultrasonic anemometers or by calculating its attitude control information. The former method requires a relatively large payload for an onboard ultrasonic anemometer, while the latter requires real-time flight log data access, which depends on the UAV manufacturers. This study proposes the feasibility of a small thermal anemometer to measure wind speeds inexpensively using a small commercial quadcopter (DJI Mavic2: M2). A laboratory experiment demonstrated that the horizontal wind speed bias increased linearly with ascending sUAV speed. A smoke experiment during hovering revealed the downward wind bias (1.2 m s−1) at a 12-cm height above the M2 body. Field experiments in the ice-covered ocean demonstrated that the corrected wind speed agreed closely with the shipboard wind data observed by a calibrated ultrasonic anemometer. A dual-mount system comprising thermal anemometers was proposed to measure wind speed and direction.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3