Simulating a Hybrid Acquisition System for UAV Platforms

Author:

Alsadik BasharORCID,Remondino FabioORCID,Nex FrancescoORCID

Abstract

Currently, there is a rapid trend in the production of airborne sensors consisting of multi-view cameras or hybrid sensors, i.e., a LiDAR scanner coupled with one or multiple cameras to enrich the data acquisition in terms of colors, texture, completeness of coverage, accuracy, etc. However, the current UAV hybrid systems are mainly equipped with a single camera that will not be sufficient to view the facades of buildings or other complex objects without having double flight paths with a defined oblique angle. This entails extensive flight planning, acquisition duration, extra costs, and data handling. In this paper, a multi-view camera system which is similar to the conventional Maltese cross configurations used in the standard aerial oblique camera systems is simulated. This proposed camera system is integrated with a multi-beam LiDAR to build an efficient UAV hybrid system. To design the low-cost UAV hybrid system, two types of cameras are investigated and proposed, namely the MAPIR Survey and the SenseFly SODA, integrated with a multi-beam digital Ouster OS1-32 LiDAR sensor. Two simulated UAV flight experiments are created with a dedicated methodology and processed with photogrammetric methods. The results show that with a flight speed of 5 m/s and an image overlap of 80/80, an average density of up to 1500 pts/m2 can be achieved with adequate facade coverage in one-pass flight strips.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network simulation tools for unmanned aerial vehicle communications: A survey;International Journal of Communication Systems;2024-06-17

2. Hypertuned-YOLO for interpretable distribution power grid fault location based on EigenCAM;Ain Shams Engineering Journal;2024-06

3. HYBRID ADJUSTMENT OF UAS-BASED LiDAR AND IMAGE DATA;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

4. Evaluation of visible contamination on power grid insulators using convolutional neural networks;Electrical Engineering;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3