UAV Fault Detection Methods, State-of-the-Art

Author:

Puchalski RadosławORCID,Giernacki WojciechORCID

Abstract

The continual expansion of the range of applications for unmanned aerial vehicles (UAVs) is resulting in the development of more and more sophisticated systems. The greater the complexity of the UAV, the greater the likelihood that a component will fail. Due to the fact that drones often operate in close proximity to humans, the reliability of flying robots, which directly affects the level of safety, is becoming more important. This review article presents recent research works on fault detection on unmanned flying systems. They include papers published between January 2016 and August 2022. Web of Science and Google Scholar databases were used to search for articles. Terminology related to fault detection of unmanned aerial vehicles was used as keywords. The articles were analyzed, each paper was briefly summarized and the most important details concerning each of the described articles were summarized in the table.

Funder

Faculty of Automatic Control, Robotics & Electrical Engineering of Poznan University of Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3