Adaptive Deep Q-Network Algorithm with Exponential Reward Mechanism for Traffic Control in Urban Intersection Networks

Author:

Fuad Muhammad Riza TanwirulORCID,Fernandez Eric Okto,Mukhlish FaqihzaORCID,Putri AdiyanaORCID,Sutarto Herman YosephORCID,Hidayat Yosi AgustinaORCID,Joelianto EndraORCID

Abstract

The demand for transportation has increased significantly in recent decades in line with the increasing demand for passenger and freight mobility, especially in urban areas. One of the most negative impacts is the increasing level of traffic congestion. A possible short-term solution to solve this problem is to utilize a traffic control system. However, most traffic control systems still use classical control algorithms with the green phase sequence determined, based on a specific strategy. Studies have proven that this approach does not provide the expected congestion solution. In this paper, an adaptive traffic controller was developed that uses a reinforcement learning algorithm called deep Q-network (DQN). Since the DQN performance is determined by reward selection, an exponential reward function, based on the macroscopic fundamental diagram (MFD) of the distribution of vehicle density at intersections was considered. The action taken by the DQN is determining traffic phases, based on various rewards, ranging from pressure to adaptive loading of pressure and queue length. The reinforcement learning algorithm was then applied to the SUMO traffic simulation software to assess the effectiveness of the proposed strategy. The DQN-based control algorithm with the adaptive reward mechanism achieved the best performance with a vehicle throughput of 56,384 vehicles, followed by the classical and conventional control methods, such as Webster (50,366 vehicles), max-pressure (50,541 vehicles) and uniform (46,241 vehicles) traffic control. The significant increase in vehicle throughput achieved by the adaptive DQN-based control algorithm with an exponential reward mechanism means that the proposed traffic control could increase the area productivity, implying that the intersections could accommodate more vehicles so that the possibility of congestion was reduced. The algorithm performed remarkably in preventing congestion in a traffic network model of Central Jakarta as one of the world’s most congested cities. This result indicates that traffic control design using MFD as a performance measure can be a successful future direction in the development of reinforcement learning for traffic control systems.

Funder

Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference47 articles.

1. A distributed control method for urban networks using multi-agent reinforcement learning based on regional mixed strategy Nash-equilibrium;IEEE Access,2020

2. Reinforcement learning in urban network traffic signal control: A systematic literature review;Expert Syst. Appl.,2022

3. Varaiya, P. (2013). Advances in Dynamic Network Modeling in Complex Transportation Systems, Springer.

4. Maximum Pressure Controller for Stabilizing Queues in Signalized Arterial Networks;Transp. Res. Rec.,2014

5. Webster, F.V. (1957). Traffic Signal Settings, Department of Scientific and Industrial Research. Road Research Technique Paper.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3