Abstract
Recently published preliminary data proposed alternating current electric field (ACEF) as a promising technique for the postharvest storage of seagrape (Caulerpa lentillifera). The current study suggested a combination of storage light irradiance (SLI) and ACEF (intensity and time) to enhance seagrape physicochemical quality (PQ). It utilized Taguchi orthogonal array design (OAD) to optimize the processing conditions. Results showed all the processing parameters had significant (p < 0.05) effects on seagrape PQ. This study found that 50 kV/m for 60 min (ACEF) and 9 mol photons m−2 s−1 performed the best inhibition on seagrape PQ deterioration. It revealed that adjusting the processing parameters in the range explored in this study (50, 125, 200 kV/m of ACEF intensity; 30, 60, 90 min of ACEF treatment time; 2, 9, 16 mol photons m−2 s−1 of SLI) can reduce up to 60% of total voltage usage compared to the previous study. With a sufficient SLI and an intermediate treatment time, the finest seagrape PQ can be sustained with a lower electric strength. Therefore, this method can benefit seagrape industries and contribute to realizing sustainable development goals by strengthening resource efficiency and lowering energy consumption.
Funder
Ministry of Science and Technology, Taiwan
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献