An Intensified Marine Predator Algorithm (MPA) for Designing a Solar-Powered BLDC Motor Used in EV Systems

Author:

Radhakrishnan Rajesh Kanna GovindhanORCID,Marimuthu UthayakumarORCID,Balachandran Praveen KumarORCID,Shukry Abdul Majid MohdORCID,Senjyu TomonobuORCID

Abstract

Recently, due to rapid growth in electric vehicle motors, used and power electronics have received a lot of concerns. 3ϕ induction motors and DC motors are two of the best and most researched electric vehicle (EV) motors. Developing countries have refined their solution with brushless DC (BLDC) motors for EVs. It is challenging to regulate the 3ϕ BLDC motor’s steady state, rising time, settling time, transient, overshoot, and other factors. The system may become unsteady, and the lifetime of the components may be shortened due to a break in control. The marine predator algorithm (MPA) is employed to propose an e-vehicle powered by the maximum power point tracking (MPPT) technique for photovoltaic (PV). The shortcomings of conventional MPPT techniques are addressed by the suggested approach of employing the MPA approach. As an outcome, the modeling would take less iteration to attain the initial stage, boosting the suggested system’s total performance. The PID (proportional integral derivative) is used to govern the speed of BLDC motors. The MPPT approach based on the MPA algorithm surpasses the variation in performance. In this research, the modeling of unique MPPT used in PV-based BLDC motor-driven electric vehicles is discussed. Various aspects, which are uneven sunlight, shade, and climate circumstances, play a part in the low performance in practical scenarios, highlighting the nonlinear properties of PV. The MPPT technique discussed in this paper can be used to increase total productivity and reduce the operating costs for e-vehicles based on the PV framework.

Funder

University of the Ryukyus

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3