Spatiotemporal Dynamics and Driving Factors of Ecosystem Services Value in the Hexi Regions, Northwest China

Author:

Li Yongge,Liu Wei,Feng QiORCID,Zhu MengORCID,Zhang JutaoORCID,Yang LinshanORCID,Yin Xinwei

Abstract

Land-use and climate changes can exert significant influences on ecosystem services value (ESV). However, interactions of these drivers in shaping the ESV remain unclear in arid inland regions. In this study, dynamic changes in ESV from 1980 to 2050 in the Hexi Regions were evaluated by integrating land-use change and other environmental factors using the equivalent factor method, local spatial autocorrelation analysis, and a geographical detector. Our results showed that the spatial distribution of ESV increased in the northwest to southeast regions of the study area. The area-weighted mean ESV of the Qilian Mountains (i.e., mountainous regions) was about 10.27–11.97-fold higher than that of the Hexi Corridor (i.e., plain regions) during the study period. As for the ecological protection (EP) scenario, from 2020 to 2050, the total ESV increase was estimated to be larger than that under the natural development (ND) and rapid urbanization (RU) scenarios. Particularly, under the EP scenario, by 2050, the enhancement of ESV in the Qilian Mountains mainly resulted from the expansion of forests, shrubs, grasslands, and water. The geographical detector indicated that LUCC was the dominant driver of the spatial heterogeneity of ESV, followed by climate and vegetation. Specifically, LUCC explained 35.39% and 80.06% of the total variation in the ESV for the Hexi Corridor and the Qilian Mountains, respectively. Natural drivers, such as temperature, precipitation, evapotranspiration, and soil organic carbon, were assumed to exert larger impacts on ESV in the mountainous regions than in the corridor. By contrast, anthropogenic factors played more significant roles in altering the ESV patterns for the corridor. Our research highlighted the importance of ecological protection in improving ESV in the future and emphasized that the difference in driving factors of ESV between mountainous and plain regions should be considered in terms of the ecosystem management for the inland regions of northwestern China.

Funder

National Key R&D Program of China

the Key R&D Program of Gansu Province, China

the National Natural Science Fund of China

the Strategic Research and Consulting Project of the Chinese Academy of Engineering

the Science and Technology Project of Gansu Province

the Forestry and Grassland Science and Technology Innovation Program of Gansu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3