Exploring the Heterocatalytic Proficiencies of ZnO Nanostructures in the Simultaneous Photo-Degradation of Chlorophenols

Author:

Chandio Ali DadORCID,Pato Abdul Hameed,Channa Iftikhar AhmedORCID,Gilani Sadaf JamalORCID,Shah Aqeel Ahmed,Ashfaq Jaweria,Buledi Jamil A.,Chandio Imran Ali,Jumah May Nasser Bin

Abstract

The development of innovative technology for effective pollutant degradation is becoming more important as a result of major environmental issues. Here, ZnO nanoparticles were synthesized using facile and aqueous chemical growth routes. Analytical techniques such as scanning electron micrographs (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Zeta Seizer (ZS), and Zeta Potential were used to analyze the resultant nanoparticles (ZP). The ZnO reveals a nanocluster texture that has a medium scale of 27 nm and a surface charge (17 ± 3 mV) with a wurtzite phase and crystalline nature. Photo catalysts have a higher potential for the thermal disposal of chlorophenols pollutants due to their low cost and simple synthesis procedure. The as-prepared sample underwent photocatalysis for the simultaneous photo-degradation of PCP and TCP as a model dye under sunlight. The ZnO nanostructure exhibited an exceptional degradation of around 85–90% for PCP and TCP in the aqua liquid, with the lowest amount of catalyst dosage of 240–250 μg individually and simultaneously, over 3 min beneath the sun ray. The greater productivity of the ZnO nanostructure for natural deterioration during solar irradiation indicates that the aqueous chemical growth enables the creation of effective and affordable photocatalysts for the photodegradation of a variety of environmental contaminants.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3