Gelatin- and Papaya-Based Biodegradable and Edible Packaging Films to Counter Plastic Waste Generation

Author:

Ashfaq Jaweria,Channa Iftikhar AhmedORCID,Shaikh Asif Ahmed,Chandio Ali DadORCID,Shah Aqeel Ahmed,Bughio Bushra,Birmahani Ashfaque,Alshehri SultanORCID,Ghoneim Mohammed M.ORCID

Abstract

Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. In this work, commonly available household materials such as gelatin, soy protein, corn starch, and papaya were used to prepare cost-effective lab-scale biodegradable and edible packaging film as an effective alternative to commercial plastics to reduce waste generation. Prepared films were characterized in terms of Fourier transform infrared spectroscopy (FTIR), water vapor transmission rate (WVTR), optical transparency, and tensile strength. FTIR confirmed the addition of papaya and soy protein to the gelatin backbone. WVTR of the gelatin-papaya films was recorded to be less than 50 g/m2/day. This water vapor barrier was five times better than films of pristine gelatin. The gelatin, papaya, and soy protein films exhibited transparencies of around 70% in the visible region. The tensile strength of the film was 2.44 MPa, which improved by a factor of 1.5 for the films containing papaya and soy protein. The barrier qualities of the gelatin and gelatin-papaya films maintained the properties even after going through 2000 bending cycles. From the results, it is inferred that the prepared films are ideally suitable for food encapsulation and their production on a larger scale can considerably cut down the plastic wastage.

Publisher

MDPI AG

Subject

General Materials Science

Reference59 articles.

1. Role of Automotive Industry in Global Warming

2. Solution Processed PVB/Mica Flake Coatings for the Encapsulation of Organic Solar Cells

3. Solution Coated Barriers for Flexible Electronics;Channa,2020

4. Preparation and Characterization of Co-Polymer (Acrylic Acid and Acrylamide) as Super Absorbent Composites Grafted with Thar Clay;Iqbal;Sci. Int. Lahore,2020

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3