Detecting the Turn on of Vehicle Brake Lights to Prevent Collisions in Highway Tunnels

Author:

Kim JongBaeORCID

Abstract

This paper proposes a method of detecting driving vehicles, estimating the distance, and detecting whether the brake lights of the detected vehicles are turned on or not to prevent vehicle collision accidents in highway tunnels. In general, it is difficult to determine whether the front vehicle brake lights are turned on due to various lights installed in a highway tunnel, reflections on the surface of vehicles, movement of high-speed vehicles, and air pollution. Since driving vehicles turn on headlights in highway tunnels, it is difficult to detect whether the vehicle brake lights are on or not through color and brightness change analysis in the brake light area only with a single image. Therefore, there is a need for a method of detecting whether the vehicle brake lights are turned on by using a sustainable change obtained from image sequences and estimated distance information. In the proposed method, a deep convolutional neural network(DCNN) is used to detect vehicles, and inverse perspective mapping is used to estimate the distance. Then, a long short-term memory (LSTM) Network that can analyze temporal continuity information is used to detect whether the brake lights of the detected vehicles are turned on. The proposed method detects whether or not the vehicle brake lights are turned on by learning the long-term dependence of the detected vehicles and the estimated distances in an image sequence. Experiments on the proposed method in highway tunnels show that the detection accuracy of whether the front vehicle brake lights are turned on or not is 90.6%, and collision accidents between vehicles can be prevented in highway tunnels.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3