A Multi-Objective Model to Find the Sustainable Location for Citrus Hub

Author:

Alzubi EmadORCID,Noche Bernd

Abstract

Citrus supply chains (CSC) are increasingly important in research due to high loss and waste, increasing demand, wide application for other industries, and differences in CSCs from country to country. This study proposes a new structure for CSC by introducing collection points to collect citrus from the farms in Jordan Valley and transport it to a citrus hub responsible for receiving, packaging, and transporting the citrus to distribution centers. The objective of this structure is to minimize the loss and waste and provide a new supply chain (SC) with stable infrastructure to track citrus from the initial stages and implement technologies such as the Cold SC. Therefore, it is crucial to find the optimum number of collection points, citrus hubs, and locations based on carbon footprint and transportation costs. The model introduced was solved using Open Solver Adds-ins after collecting data such as distances and coordinates using Google Maps and the altitude of those coordinates from SolarGIS. After running the model, it was found that the optimum number of collection points is 52 and the optimum number of citrus hubs is two. The results showed that the transportation costs of one hub are lower by 30%, whereas for two hubs are lower by 60% compared to the current location of the central market of fruits and vegetables (CM). The “kg CO2 e/kg citrus” values are 0.48 and 0.24 for one hub and two hubs, respectively, which showed a significant reduction compared to CM, which was 0.69 kg CO2 e/kg citrus. Therefore, installing two citrus hubs will improve the overall sustainable performance of CSC. Future research might be directed to integrate the circular economy into CSC and find possible applications for citrus loss and waste.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference48 articles.

1. Link-Length Minimization in Networks;Miehle;Oper. Res.,1958

2. New models for the location of controversial facilities: A bilevel programming;Labbe´;Comput. Oper. Res.,2019

3. Location of Charging Stations in Electric Car Sharing Systems Location of Charging Stn;Brandstätter;Electr. Car Shar. Syst.,2020

4. Ahmad, D., Bunayah, P., Istiqomah, S., and Hisjam, M. Optimization of Network Design for Charging Station of Electric Car with Center of Gravity Method: A Case Study. Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management.

5. Last-mile delivery: Optimal locker location under multinomial logit choice model;Lin;Transp. Res. Part E Logist. Transp. Rev.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3