Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation

Author:

Jin Xin,Wang Run-Zi,Shu Yang,Fei Jia-Wen,Wen Jian-FengORCID,Tu Shan-Tung

Abstract

High-temperature components in power plants may fail due to creep and fatigue. Creep damage is usually accompanied by the nucleation, growth, and coalescence of grain boundary cavities, while fatigue damage is caused by excessive accumulated plastic deformation due to the local stress concentration. This paper proposes a multiscale numerical framework combining the crystal plastic frame with the meso-damage mechanisms. Not only can it better describe the deformation mechanism dominated by creep from a microscopic viewpoint, but also reflects the local damage of materials caused by irreversible microstructure changes in the process of creep-fatigue deformation to some extent. In this paper, the creep-fatigue crack initiation analysis of a modified 12%Cr steel (X12CrMoWvNBN10-1-1) is carried out for a given notch specimen. It is found that creep cracks usually initiate at the triple grain boundary junctions or at the grain boundaries approximately perpendicular to the loading direction, while fatigue cracks always initiate from the notch surface where stress is concentrated. In addition to this, the crack initiation life can be quantitatively described, which is affected by the average grain size, initial notch size, stress range and holding time.

Funder

National Natural Science Foundation of China

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3