Mechanical Properties and Corrosion Behavior of Ti6Al4V Particles Obtained by Implantoplasty: An In Vitro Study. Part II

Author:

Toledano-Serrabona Jorge,Sánchez-Garcés Maria ÁngelesORCID,Gay-Escoda Cosme,Valmaseda-Castellón Eduard,Camps-Font OctaviORCID,Verdeguer Pablo,Molmeneu MeritxellORCID,Gil Francisco JavierORCID

Abstract

In the field of implant dentistry there are several mechanisms by which metal particles can be released into the peri-implant tissues, such as implant insertion, corrosion, wear, or surface decontamination techniques. The aim of this study was to evaluate the corrosion behavior of Ti6Al4V particles released during implantoplasty of dental implants treated due to periimplantitis. A standardized protocol was used to obtain metal particles produced during polishing the surface of Ti6Al4V dental implants. Physicochemical and biological characterization of the particles were described in Part I, while the mechanical properties and corrosion behavior have been studied in this study. Mechanical properties were determined by means of nanoindentation and X-ray diffraction. Corrosion resistance was evaluated by electrochemical testing in an artificial saliva medium. Corrosion parameters such as critical current density (icr), corrosion potential (ECORR), and passive current density (iCORR) have been determined. The samples for electrochemical behavior were discs of Ti6Al4V as-received and discs with the same mechanical properties and internal stresses than the particles from implantoplasty. The discs were cold-worked at 12.5% in order to achieve the same properties (hardness, strength, plastic strain, and residual stresses). The implantoplasty particles showed a higher hardness, strength, elastic modulus, and lower strain to fracture and a compressive residual stress. Resistance to corrosion of the implantoplasty particles decreased, and surface pitting was observed. This fact is due to the increase of the residual stress on the surfaces which favor the electrochemical reactions. The values of corrosion potential can be achieved in normal conditions and produce corroded debris which could be cytotoxic and cause tattooing in the soft tissues.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3