Decarbonizing the International Shipping and Aviation Sectors

Author:

Fragkos PanagiotisORCID

Abstract

The Paris Agreement requires a drastic reduction of global carbon emissions towards the net zero transition by mid-century, based on the large-scale transformation of the global energy system and major emitting sectors. Aviation and shipping emissions are not on a trajectory consistent with Paris goals, driven by rapid activity growth and the lack of commercial mitigation options, given the challenges for electrification of these sectors. Large-scale models used for mitigation analysis commonly do not capture the specificities and emission reduction options of international shipping and aviation, while bottom-up sectoral models do not represent their interlinkages with the entire system. Here, I use the global energy system model PROMETHEUS, enhanced with a detailed representation of the shipping and aviation sector, to explore transformation pathways for these sectors and their emission, activity, and energy mix impacts. The most promising alternative towards decarbonizing these sectors is the large-scale deployment of low-carbon fuels, including biofuels and synthetic clean fuels, accompanied by energy efficiency improvements. The analysis shows that ambitious climate policy would reduce the trade of fossil fuels and lower the activity and the mitigation effort of international shipping, indicating synergies between national climate action and international transport.

Funder

European Commission, H2020 research and innovation program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference67 articles.

1. UNFCCC (2022, September 15). Paris Agreement. Decision 1/CP.17. Available online: http://unfccc.int/rsource/docs/2015/cop21/eng/l09r01.pdf.

2. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., and Eicke-meier, P. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-Mental Panel on Climate Change, Cambridge University Press.

3. Transition policies for climatically sustainable aviation;Lyle;Transp. Rev.,2021

4. Cost and emissions pathways towards net-zero climate impacts in aviation;Dray;Nat. Clim. Chang.,2022

5. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review;Bouman;Transp. Res. D Transp. Environ.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3