Generator Fault Classification Method Based on Multi-Source Information Fusion Naive Bayes Classification Algorithm

Author:

Wang Yi,Huang Yuhao,Yang Kai,Chen Zhihan,Luo ChengORCID

Abstract

The existing motor fault classification methods mostly use sensors to detect a single fault feature, which makes it difficult to ensure high diagnostic accuracy. In this paper, a motor fault classification method based on multi-source information fusion Naive Bayes classification algorithm is proposed. Firstly, this paper introduces the concept and advantages of multi-source information fusion, as well as its problems of miscellaneous information and inconsistent data magnitude. For example, as this paper classifies the fault of generators, there are many physical quantities, such as voltage, current and temperature, which are not in the same dimension, therefore it is difficult to fuse. Then, aiming at the corresponding problems, this paper uses a PCA dimension reduction method to remove redundant information and reduce the dimension of multi-dimensional complex information. Aiming at the problem of unequal data magnitude, the interval mapping method is adopted to effectively solve the misjudgment caused by unequal data magnitude. After the initial multi-source information processing, the classical Naive Bayes classification algorithm is used for fault classification, and the algorithm diagnosis and verification are carried out according to the statistical fault data. Use of the algorithm increases accuracy to more than 97%.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation funded project

Key Research and Development Plan of Hubei Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3