Fault Identification of UHVDC Transmission Based on DF-AD and Ensemble Learning

Author:

Zhao Qingsheng12ORCID,Yang Xinyu12,Han Xiaoqing12,Liang Dingkang12,Wang Xuping1

Affiliation:

1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Shanxi Key Laboratory of Power System Operation and Control, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

High-resistance ground faults are difficult to detect with existing ultrahigh voltage direct current (UHVDC) transmission fault detection systems because of their low sensitivity. To address this challenge, a straightforward mathematical method has been proposed for fault detection in UHVDC system based on the downsampling factor (DF) and approximation derivatives (AD). The signals at multiple sampling frequencies were analysed using the DF, and the AD approach was used to generate various levels of detail and approximation coefficients. Initially, the signals were processed with different DF values. The first, second, and third order derivatives of the generated signals were calculated by the AD method. Next, the entropy features of these signals were computed, and the Random Forest-Recursive feature elimination with cross-validation (RF-RFECV) algorithm was used to select a high-quality feature subset. Finally, an ensemble classifier consisting of Light Gradient Boosting Machine (LightGBM), K Nearest Neighbor (KNN), and Naive Bayes (NB) classifiers was utilized to identify UHVDC faults. The MATLAB/Simulink simulation software was used to develop a ±800 kV UHVDC transmission line model and perform simulation experiments with various fault locations and types. Based on the experiments, it has been established that the suggested approach is highly precise in detecting several faults on UHVDC transmission lines. The method is capable of accurately identifying low or high resistance faults, irrespective of their incidence, and is remarkably resistant to transitional resistance. Furthermore, it exhibits excellent performance in identifying faults using a small sample size and is highly reliable.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3