Compound Context-Aware Bayesian Inference Scheme for Smart IoT Environment

Author:

Ullah IhsanORCID,Kim Ju-Bong,Han Youn-HeeORCID

Abstract

The objective of smart cities is to improve the quality of life for citizens by using Information and Communication Technology (ICT). The smart IoT environment consists of multiple sensor devices that continuously produce a large amount of data. In the IoT system, accurate inference from multi-sensor data is imperative to make a correct decision. Sensor data are often imprecise, resulting in low-quality inference results and wrong decisions. Correspondingly, single-context data are insufficient for making an accurate decision. In this paper, a novel compound context-aware scheme is proposed based on Bayesian inference to achieve accurate fusion and inference from the sensory data. In the proposed scheme, multi-sensor data are fused based on the relation and contexts of sensor data whether they are dependent or not on each other. Extensive computer simulations show that the proposed technique significantly improves the inference accuracy when it is compared to the other two representative Bayesian inference techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proactive Context Caching Based on Situation Prediction for Real-Time Mobile IoT Applications;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

2. Improving the Usefulness of Context Information for IoT Applications: A Middleware-based Approach;2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2024-03-11

3. Distributed Bayesian Inference for Large-Scale IoT Systems;Big Data and Cognitive Computing;2023-12-19

4. Towards World Wide Context Management: Architecting Distributed Contextual Intelligence Systems for Real-Time IoT Applications;2023 24th IEEE International Conference on Mobile Data Management (MDM);2023-07

5. A Feature-Weighted Clustering approach for Context Discovery and Selection of Devices in IoT;2023 4th International Conference on Computing and Communication Systems (I3CS);2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3