Distributed Bayesian Inference for Large-Scale IoT Systems

Author:

Vlachou Eleni1ORCID,Karras Aristeidis1ORCID,Karras Christos1ORCID,Theodorakopoulos Leonidas2ORCID,Halkiopoulos Constantinos2ORCID,Sioutas Spyros1ORCID

Affiliation:

1. Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece

2. Department of Management Science and Technology, University of Patras, 26334 Patras, Greece

Abstract

In this work, we present a Distributed Bayesian Inference Classifier for Large-Scale Systems, where we assess its performance and scalability on distributed environments such as PySpark. The presented classifier consistently showcases efficient inference time, irrespective of the variations in the size of the test set, implying a robust ability to handle escalating data sizes without a proportional increase in computational demands. Notably, throughout the experiments, there is an observed increase in memory usage with growing test set sizes, this increment is sublinear, demonstrating the proficiency of the classifier in memory resource management. This behavior is consistent with the typical tendencies of PySpark tasks, which witness increasing memory consumption due to data partitioning and various data operations as datasets expand. CPU resource utilization, which is another crucial factor, also remains stable, emphasizing the capability of the classifier to manage larger computational workloads without significant resource strain. From a classification perspective, the Bayesian Logistic Regression Spark Classifier consistently achieves reliable performance metrics, with a particular focus on high specificity, indicating its aptness for applications where pinpointing true negatives is crucial. In summary, based on all experiments conducted under various data sizes, our classifier emerges as a top contender for scalability-driven applications in IoT systems, highlighting its dependable performance, adept resource management, and consistent prediction accuracy.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3