Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite

Author:

Wang Li,Liu Siyuan,Xuan Wendi,Li Shaopeng,Wei AnleiORCID

Abstract

Groundwater nitrate contamination is challenging and requires efficient solutions for nitrate removal. This study aims to investigate nitrate removal using a novel adsorbent, biochar-supported aluminum-substituted goethite (BAG). The results showed that an increase in the initial Al/(Al + Fe) atomic ratio for BAGs from 0 to 20% decreased the specific surface area from 115.2 to 75.7 m2/g, but enhanced the surface charge density from 0.0180 to 0.0843 C/m2. By comparison, 10% of Al/(Al + Fe) led to the optimal adsorbent for nitrate removal. The adsorbent’s adsorption capacity was effective with a wide pH range (4–8), and decreased with increasing ionic strength. The descending order of nitrate adsorption inhibition by co-existing anions was SO42−, HCO3−, PO43−, and Cl−. The adsorption kinetics and isotherms agreed well with the pseudo-first-order equation and Langmuir model, respectively. The theoretical maximum adsorption capacity was 96.1469 mg/g. Thermodynamic analysis showed that the nitrate adsorption was spontaneous and endothermic. After 10-cycle regeneration, the BAG still kept 92.6% of its original adsorption capacity for synthetic nitrate-contaminated groundwater. Moreover, the main adsorption mechanism was attributed to electrostatic attraction due to the enhancement of surface charge density by Al substitution. Accordingly, the BAG adsorbent is a potential solution to remove nitrate from groundwater.

Funder

Xianyang Vocational Technical College

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3