Stimulating Nitrate Removal with Significant Conversion to Nitrogen Gas Using Biochar-Based Nanoscale Zerovalent Iron Composites

Author:

Liu SiyuanORCID,Han Xiao,Li Shaopeng,Xuan Wendi,Wei AnleiORCID

Abstract

For efficient and environmentally friendly removal of nitrate from groundwater, biochar-based nanoscale zerovalent iron composites were prepared, where biochar was derived from pine sawdust at 4 different pyrolysis temperatures. The results show that biochar with different pyrolysis temperatures played a great role in both nitrate removal efficiency and nitrate conversion rate to nitrogen gas for the prepared composites. Specifically, the composite with biochar pyrolyzed at 500 °C, ZB12-500, showed the best performance in both nitrate removal and conversion to nitrogen gas. With an initial solution pH from 5 to 10, ZB12-500 maintained high removal efficiencies varying from 97.29% to 89.04%. Moreover, the conversion of nitrate to nitrogen gas increased with the initial nitrate concentration, and it reached 31.66% with an initial nitrate concentration of 100 mg/L. Kinetics analysis showed that the nitrate removal process fit well with a two-compartment first-order kinetic model. Meanwhile, the test of nitrate removal by ZB12-500 in synthetic groundwater showed that HCO3− and SO42− limited nitrate removal but improved nitrate conversion to nitrogen gas. Furthermore, the nitrate removal mechanism suggested that biochar could facilitate electron transfer from zero valent iron to nitrate, which led to high nitrate removal efficiency. In addition, the interaction of ferrous ions and the quinone group of biochar could increase the nitrate conversion to nitrogen gas. Therefore, this study suggests that ZB12-500 is a promising alternative for the remediation of nitrate-contaminated groundwater.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3