Abstract
Highway system is experiencing increasing traffic congestion with fast-growing number of vehicles in metropolitan areas. Implementing traffic management strategies such as utilizing the hard shoulder as an extra lane could increase highway capacity without extra construction work. This paper presents a method of determining an optimal traffic condition and speed limit of opening hard shoulder. Firstly, the traffic states are clustered using K-Means, mean shift, agglomerative and spectral clustering methods, and the optimal clustering algorithm is selected using indexes including the silhouette score, Davies-Bouldin Index and Caliski-Harabaz Score. The results suggested that the clustering effect of using K-Means method with three categories is optimal. Then, cellular automata model is used to simulate traffic conditions before and after the hard shoulder running strategy is applied. The parameters of the model, including the probabilities of random deceleration, slow start and lane change, are calibrated using real traffic data. Four indicators including the traffic volume, the average speed, the variance of speed, and the travel time of emergency rescue vehicles during traffic accident obtained using the cellular automata model are used to evaluate various hard shoulder running strategies. By using factor analysis and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods, the optimal traffic condition and speed limit of opening hard shoulder could be determined. This method could be applied to highway segments of various number of lanes and different speed limits to optimize the hard shoulder running strategy for highway management.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献