Abstract
Entomological radar is a specially designed instrument that can measure the behavioral and biological characteristics of high-altitude migrating insects. Its application is of great significance for the monitoring, early warning, and control of agricultural pests. As an important component of the local migratory biomass, insects fly in the air during the day and night. The fully polarimetric entomological radar was carefully designed with all-day, all-weather, and multi-function measurement capabilities. The fully polarimetric entomological radar measures the mass of a single insect based on the radar cross-sectional (RCS) measurement and then calculates the biomass of migrating insects. Therefore, the measurement accuracy of the insect RCS is the key indicator affecting the accuracy of migratory biomass statistics. Due to the radar’s lack of in-beam angle measurement ability, the insect RCS is usually measured based on the assumption that the insect is on the beam center. Therefore, the measured RCS will be smaller than true value if the insect deviates from the beam center due to the gain curve of the antenna. This leads to measurement errors in regard to the insect mass and migratory biomass. In order to solve this problem, a biomass estimation method, reported in this paper, was designed under the assumption of a uniform distribution of migrating insects in the radar monitoring airspace. This method can estimate the individual RCS expectation of migrating insects through a statistical method without measuring the position of the insects in the beam and then obtain the migratory biomass. The effectiveness of the model and algorithm is verified by simulations and entomological radar field measurements.
Subject
General Earth and Planetary Sciences